16,537 research outputs found

    Talk More Listen Less: Energy-Efficient Neighbor Discovery in Wireless Sensor Networks

    Full text link
    Neighbor discovery is a fundamental service for initialization and managing network dynamics in wireless sensor networks and mobile sensing applications. In this paper, we present a novel design principle named Talk More Listen Less (TMLL) to reduce idle-listening in neighbor discovery protocols by learning the fact that more beacons lead to fewer wakeups. We propose an extended neighbor discovery model for analyzing wakeup schedules in which beacons are not necessarily placed in the wakeup slots. Furthermore, we are the first to consider channel occupancy rate in discovery protocols by introducing a new metric to trade off among duty-cycle, latency and channel occupancy rate. Guided by the TMLL principle, we have designed Nihao, a family of energy-efficient asynchronous neighbor discovery protocols for symmetric and asymmetric cases. We compared Nihao with existing state of the art protocols via analysis and real-world testbed experiments. The result shows that Nihao significantly outperforms the others both in theory and practice.Comment: 9 pages, 14 figures, published in IEEE INFOCOM 201

    Quantum-assisted Monte Carlo algorithms for fermions

    Full text link
    Quantum computing is a promising way to systematically solve the longstanding computational problem, the ground state of a many-body fermion system. Many efforts have been made to realise certain forms of quantum advantage in this problem, for instance, the development of variational quantum algorithms. A recent work by Huggins et al. reports a novel candidate, i.e. a quantum-classical hybrid Monte Carlo algorithm with a reduced bias in comparison to its fully-classical counterpart. In this paper, we propose a family of scalable quantum-assisted Monte Carlo algorithms where the quantum computer is used at its minimal cost and still can reduce the bias. By incorporating a Bayesian inference approach, we can achieve this quantum-facilitated bias reduction with a much smaller quantum-computing cost than taking empirical mean in amplitude estimation. Besides, we show that the hybrid Monte Carlo framework is a general way to suppress errors in the ground state obtained from classical algorithms. Our work provides a Monte Carlo toolkit for achieving quantum-enhanced calculation of fermion systems on near-term quantum devices

    On Low-Resolution ADCs in Practical 5G Millimeter-Wave Massive MIMO Systems

    Full text link
    Nowadays, millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems is a favorable candidate for the fifth generation (5G) cellular systems. However, a key challenge is the high power consumption imposed by its numerous radio frequency (RF) chains, which may be mitigated by opting for low-resolution analog-to-digital converters (ADCs), whilst tolerating a moderate performance loss. In this article, we discuss several important issues based on the most recent research on mmWave massive MIMO systems relying on low-resolution ADCs. We discuss the key transceiver design challenges including channel estimation, signal detector, channel information feedback and transmit precoding. Furthermore, we introduce a mixed-ADC architecture as an alternative technique of improving the overall system performance. Finally, the associated challenges and potential implementations of the practical 5G mmWave massive MIMO system {with ADC quantizers} are discussed.Comment: to appear in IEEE Communications Magazin

    Designing a realistic peer-like embodied conversational agent for supporting children\textquotesingle s storytelling

    Full text link
    Advances in artificial intelligence have facilitated the use of large language models (LLMs) and AI-generated synthetic media in education, which may inspire HCI researchers to develop technologies, in particular, embodied conversational agents (ECAs) to simulate the kind of scaffolding children might receive from a human partner. In this paper, we will propose a design prototype of a peer-like ECA named STARie that integrates multiple AI models - GPT-3, Speech Synthesis (Real-time Voice Cloning), VOCA (Voice Operated Character Animation), and FLAME (Faces Learned with an Articulated Model and Expressions) that aims to support narrative production in collaborative storytelling, specifically for children aged 4-8. However, designing a child-centered ECA raises concerns about age appropriateness, children\textquotesingle s privacy, gender choices of ECAs, and the uncanny valley effect. Thus, this paper will also discuss considerations and ethical concerns that must be taken into account when designing such an ECA. This proposal offers insights into the potential use of AI-generated synthetic media in child-centered AI design and how peer-like AI embodiment may support children\textquotesingle s storytelling.Comment: 6 pages with 2 figures. The paper has been peer-reviewed and presented at the "CHI 2023 Workshop on Child-centred AI Design: Definition, Operation and Considerations, April 23, 2023, Hamburg, German
    • …
    corecore